Hybrid Moments of the Riemann Zeta-function

نویسنده

  • Aleksandar Ivić
چکیده

The “hybrid” moments Z 2T T |ζ( 1 2 + it)| „ Z t+G t−G |ζ( 1 2 + ix)| dx m dt of the Riemann zeta-function ζ(s) on the critical line Re s = 1 2 are studied. The expected upper bound for the above expression is Oε(T G). This is shown to be true for certain specific values of k, l,m ∈ N, and the explicitly determined range of G = G(T ; k, l,m). The application to a mean square bound for the Mellin transform function of |ζ( 1 2 + ix)| is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Euler-hadamard Product for the Riemann Zeta Function

We use a smoothed version of the explicit formula to find an accurate pointwise approximation to the Riemann zeta function as a product over its nontrivial zeros multiplied by a product over the primes. We model the first product by characteristic polynomials of random matrices. This provides a statistical model of the zeta function which involves the primes in a natural way. We then employ the...

متن کامل

A Hybrid Euler-hadamard Product Formula for the Riemann Zeta Function

We use a smoothed version of the explicit formula to find an approximation to the Riemann zeta function as a product over its nontrivial zeros multiplied by a product over the primes. We model the first product by characteristic polynomials of random matrices. This provides a statistical model of the zeta function that involves the primes in a natural way. We then employ the model in a heuristi...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Random Matrix Theory and Discrete Moments of the Riemann Zeta Function

We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.

متن کامل

Random Matrix Theory Predictions for the Asymptotics of the Moments of the Riemann Zeta Function and Numerical Tests of the Predictions

In 1972, H.L. Montgomery and F. Dyson uncovered a surprising connection between the Theory of the Riemann Zeta function and Random Matrix Theory. For the next few decades, the major developments in the area were the numerical calculations of Odlyzko and conjectures for the moments of the Riemann Zeta function (and other L-functions) found by Conrey, Ghosh, Gonek, Heath-Brown, Hejhal and Sarnak....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008